Performance Excipients as Tools to Promote Robust Drug Products

James Farina
Komal Shahani

Company Overview
About Avantor™

- Leading global manufacturer and supplier of high purity chemicals used in the pharmaceutical, laboratory, and electronic industries
- Over 140 years experience
- ISO 9000-certified, FDA-registered, cGMP-compliant manufacturing
- Global multi-compendia chemicals
- Several highly respected brand names, including J.T.Baker® and Macron™
- Decades-long relationships with top pharmaceutical customers

Avantor: Established Global Supplier

Notable Brands:

Global Facilities:
PHARMACEUTICAL DOSAGE FORMS

DOSAGE FORMS

SOLID ORAL LIQUID ORAL PARENTERAL SEMISOLID

Tablets Capsules Powders Solutions Syrups Suspensions Injections Infusions Ophthalmic Ointments Creams Gels

API EXCIPIENT CONVERGENCE

BPCs = Bulk Processed Chemicals
A = API
E = Excipient
PANEXCEA™ PERFORMANCE EXCIPIENT PLATFORM

- PanExcea™ IR (MHC300G) *Commercialized*
- PanExcea™ ODT (MC200G) *Commercialized*
- PanExcea™ Modified Release*

PanExcea™ GR/CR
PanExcea™ CR

* In development phase

Presentation
Need for New Unique Excipients

Drug Life Cycle Management

- Improve the safety and efficacy of the drug
- Extend patent life of the drug molecule
- New indication
- New patient population

FDA Approvals 2002 – 2009

<table>
<thead>
<tr>
<th>Year</th>
<th>Reformulations</th>
<th>NCEs</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>55</td>
<td>17</td>
<td>72</td>
</tr>
<tr>
<td>2003</td>
<td>49</td>
<td>21</td>
<td>70</td>
</tr>
<tr>
<td>2004</td>
<td>69</td>
<td>31</td>
<td>100</td>
</tr>
<tr>
<td>2005</td>
<td>64</td>
<td>18</td>
<td>82</td>
</tr>
<tr>
<td>2006</td>
<td>77</td>
<td>18</td>
<td>95</td>
</tr>
<tr>
<td>2007</td>
<td>50</td>
<td>16</td>
<td>66</td>
</tr>
<tr>
<td>2008</td>
<td>73</td>
<td>25</td>
<td>98</td>
</tr>
<tr>
<td>2009</td>
<td>75</td>
<td>26</td>
<td>101</td>
</tr>
</tbody>
</table>

PERFORMANCE EXCIPIENTS

- Provide a synergy of functionality
- Mask undesirable properties of individual excipients
- Demonstrate better properties than a physical mixture of their components
- Have well defined, controlled physical and functional properties
- Complete Excipient or a Building Block
- Reduce formulation development complexity
- Enable implementation of the most efficient and cost-effective manufacturing process
- Reduce supply chain complexity
- Ease quality and regulatory compliance
 - Well defined design space
 - Supports QbD

Performance Excipients Synonyms:

Co-processed, Multifunctional, High Functionality
Challenges in Designing Performance Excipients

- Need excellent flowability/compressibility with wide range of API loading levels
- Need excellent content uniformity with a wide range of APIs
- Need to improve physical properties with no chemical change of components

Particle Engineering Technology

- Synergistic physical association of two or more conventional excipients by patented technology
- Optimized particle size for enhanced flowability
- Unique particle morphology with spherical shape
- Surface roughness for API interaction resulting in enhanced content uniformity
- Optimization of porosity/particle density
PanExcea™ Performance Excipient Platform

- PanExcea™ IR (MHC300G) *Commercialized*
- PanExcea™ CR/GR
- PanExcea™ ODT (MC200G) *Commercialized*

Engineered IR Excipient

- **Filler**: MCC
- **Binder**: HPMC
- **Disintegrant**: CPVD

Unique wet homogenization/Spray-dry granulation technology

- MCC-HPMC-CPVD spherical Engineered excipient
Particle Engineered IR Excipient

Optimization of Flow Properties

Particle Size | Control of Fines | Particle Shape

OPTIMUM PARTICLE FLOW
Flowability Comparison

Tableting study for 62.5% IBU (50um) conversion to direct compression from wet granulation

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount (g)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibuprofen</td>
<td>1250</td>
<td>62.5</td>
</tr>
<tr>
<td>Engineered Excipient</td>
<td>730</td>
<td>36.5</td>
</tr>
<tr>
<td>Silica (RexCipients GL100, Huber)</td>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>Mg Stearate (Avantor)</td>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>2000</td>
<td>100</td>
</tr>
</tbody>
</table>
Results

- Flowability: Excellent
- Tablet Weight: 320 mg, 10 mm
- Hardness: 13 Kp at 1600 lb Compression Force
- Friability: 0.3%
- Content Uniformity: 99.4% with RSD: 0.21%
- Dissolution 98% in less than 15 minutes
- Conversion from wet granulation to direct compression

ODT TECHNOLOGY PLATFORMS

<table>
<thead>
<tr>
<th>Technology Platform</th>
<th>Unique Features</th>
<th>Process Consideration</th>
</tr>
</thead>
</table>
| Lyophilization | Immediate dissolution (2-10 sec) | High cost of production
| | | Specialized manufacturing equipment |
| | | Specialized packaging |
| | | Poor physical resistance and sensitive to humidity |
| | | Low dose of water soluble drugs (60 mg) |
| Molding | Rapid dissolution (5-15 sec) High dose | High cost of production
| | | Weak mechanical strength |
| Direct compression | Low cost of production
| | Standard equipment | Impact of tablet size and hardness on disintegration |
| | Good physical resistance High dose | |
| Cotton candy | Pleasant mouth feel | Specialized manufacturing equipment |
| | | High temperatures used to melt the matrix limit use of heat sensitive drugs |

Modified from Fu et al., Crit. Rev. Ther. Drug Carrier Syst., 2004
Particle Engineered ODT Excipient

- Challenge was to develop a direct compression ODT excipient

- Key requirements was that it disintegrated within seconds within the oral cavity, it be compressible, flowable and compatible with a wide range of APIs

PANEXCEA™ MC200G – MANNITOL BASED HIGH PERFORMANCE ODT EXCIPIENT

Typical Properties
- D50: 90 µm
- Bulk Density: 0.66 g/cc
- Tapped Density: 0.81 g/cc
- Angle of Repose: 28°
- Compressibility Index: 20
- Loss on Drying: 2.6%
PanExcea™ UNIQUE FEATURES

- Specially engineered direct compression excipient
- Combination of wicking agent and dispersing agent
 - Enables rapid disintegration
- Good taste and mouth feel
- Spherical particle shape (90 µm)
 - Good flowability and compactibility
- High drug loading (up to 40%)
- Formulation development flexibility

ODT FORMULATION USING PanExcea™

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>0.5-40</td>
</tr>
<tr>
<td>PanExcea™ MC200G</td>
<td>40-75</td>
</tr>
<tr>
<td>Diluent/Diluent+Binder (MCC/MCC+Starch)</td>
<td>5-15</td>
</tr>
<tr>
<td>Disintegrant (Crospovidone)</td>
<td>5-10</td>
</tr>
<tr>
<td>Antiadherent (Silica)</td>
<td>1-2</td>
</tr>
<tr>
<td>Lubricant (Magnesium stearate/Sodium stearyl fumarate)</td>
<td>0.5-2</td>
</tr>
<tr>
<td>Sweetener (Aspartame/Sucralose)</td>
<td>0.5-2</td>
</tr>
<tr>
<td>Flavor (Orange/Strawberry/Grape)</td>
<td>0.5-2</td>
</tr>
</tbody>
</table>
APPLICATIONS

- Acetaminophen
- Cetirizine
- Ropinirole
- Donepezil
- Dextromethorphan
- Loratidine
- Memantine
- Vitamin C
- Esomeprazole
- Ondensetron
- Tramadol

CASE STUDY

- Formulate Acetaminophen ODT tablets at API levels 0.5-40%
- Direct compression process
 - Powder blend must have good flowability and compressibility
- Tablets must
 - disintegrate within 30 seconds
 - have sufficient mechanical strength
 - have friability less than 0.5%*

*USP limit is less than 1%
CASE STUDY

Acetaminophen ODT Powder Blend Characteristics

<table>
<thead>
<tr>
<th>Test</th>
<th>0.5% APAP</th>
<th>10% APAP</th>
<th>40% APAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Size (µm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>28</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>D50</td>
<td>81</td>
<td>81</td>
<td>91</td>
</tr>
<tr>
<td>D90</td>
<td>158</td>
<td>158</td>
<td>175</td>
</tr>
<tr>
<td>Angle of Repose (°)</td>
<td>36.3</td>
<td>36.6</td>
<td>37.7</td>
</tr>
<tr>
<td>Compressibility Index (%)</td>
<td>19.2</td>
<td>19.4</td>
<td>14.9</td>
</tr>
<tr>
<td>Aerated Bulk Density (g/cc)</td>
<td>0.59</td>
<td>0.58</td>
<td>0.57</td>
</tr>
<tr>
<td>Tapped Bulk Density (g/cc)</td>
<td>0.73</td>
<td>0.72</td>
<td>0.67</td>
</tr>
<tr>
<td>Total Flowability Index*</td>
<td>76</td>
<td>75</td>
<td>77</td>
</tr>
<tr>
<td>Flowability and Compressibility</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>

Flowability or flow index: Index (0 -100) assigned to powder flow based on measurement of angle of spatula, angle of repose, particle size distribution, and densities. R.L. Carr (1965).

Powder blend was characterized using Hosokawa Powder Tester and Hosokawa Air Jet Sieving Instrument. Acetaminophen is abbreviated as APAP.

Acetaminophen ODT Composition and Characteristics

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granular Acetaminophen (97%)</td>
<td>0.51</td>
<td>10.3</td>
<td>41.24</td>
</tr>
<tr>
<td>PanExcea™ MC200G</td>
<td>74.5</td>
<td>65</td>
<td>39.51</td>
</tr>
<tr>
<td>MCC</td>
<td>15</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Crospovidone</td>
<td>7.74</td>
<td>7.45</td>
<td>7</td>
</tr>
<tr>
<td>Silica</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Hardness at 1600 lbs (kp)</td>
<td>4.5 ± 0.4</td>
<td>5.8 ± 0.2</td>
<td>6.4 ± 0.2</td>
</tr>
<tr>
<td>Disintegration Time (sec)</td>
<td>8 ± 0</td>
<td>9 ± 1</td>
<td>15 ± 1</td>
</tr>
<tr>
<td>Friability (%)</td>
<td>0.28</td>
<td>0.19</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Content variation value of powder blend containing 0.5% APAP = 1.99% RSD

Tablets were compressed on an instrumented 10 station rotary press at 30 rpm. Tablet size was 10 mm and tablet weight was 350 mg. N=5.
CASE STUDY

• Formulate Cetirizine hydrochloride chewable tablets at API levels 2.5%

• API is extremely bitter
 ➢ Suitable taste masking strategy involving cyclodextrin complexation and granulation devised

• Incompatibility of the API with sugars like mannitol
 ➢ Mannitol in PanExcea™ MC200G is unavailable to react with the API

• Direct compression process
 ➢ 5-7 kp hardness, acceptable friability and pleasant taste

Dissolution Conditions

<table>
<thead>
<tr>
<th>Dissolution Conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparatus</td>
<td>USP Type II</td>
</tr>
<tr>
<td>RPM</td>
<td>50</td>
</tr>
<tr>
<td>Volume</td>
<td>900 ml</td>
</tr>
</tbody>
</table>

Dissolution of Chewable Tablet Containing Cetirizine Hydrochloride
COMPARATIVE EVALUATION OF ODT EXCipients

DISINTEGRATION TIME VS HARDNESS
PLACEBO TABLETS

Tableting parameters
Tableting speed: 30 rpm
Tablet Weight: 100 mg
Tablet Diameter: 6 mm

DISINTEGRATION TIME VS HARDNESS
TABLETS CONTAINING 10% ACETAMINOPHEN

Tableting parameters
Tableting speed: 30 rpm
Tablet Weight: 100 mg
Tablet Diameter: 6 mm
Avantor introduces:

PanExcea™ GR Performance Excipient: Gastro-Retentive Oral Dosage

• High water uptake; swelling (swelling index 22.2, EP method 2-8.4), floating tablets
• Robust gel strength, (tablet yield stress 22-26 Pa, 13 mm tablets, 200 mg c
• Improved stomach retention increases drug availability
• Clinical proof of pharmacokinetic improvements
• Enabling technology for product life cycle management
• Novel system; intellectual property available for license
• cGMP production of starting materials

PanExcea™ GR Performance Excipient

Clinical Proof of Concept - Study Design

• Open label, balanced, randomized, 3 treatment, 3 sequence, single dose, crossover, relative bioavailability study, under fed conditions

• 3 formulations of BCS Class 1 drug:
 • Immediate Release (IR) ... A marketed formulation
 • Controlled Release (CR) ... HPMC matrix
 • Gastro Retentive (GR) ... PanExcea GR tablet

• 15 volunteers in cross-over studies:
 Healthy subjects, ages 18-45
 800-1000 cal meal pre-dose
 Dosage with 240ml water
 3 standardized meals thereafter

• Plasma concentrations at standardized times up to 36 hrs post dosage
Clinical Proof of Concept - Results

Mean Plasma Drug Level (ng/ml)

Clinical results prove gastro-retention:

PanExcea GR provides improved pharmacokinetics:

- AUC(GR): > 30% higher than AUC(CR)
- AUC(GR) = AUC(IR)

- $T_{max}(GR) = 9.3$ hrs vs $T_{max}(CR) = 3.0$ hrs

Formulation
- IR
- CR
- GR

IR/CR data from commercially available drug products, GR data based on experimental PanExcea Product

Conclusion

- Particle engineering technology by the synergistic physical association of two or more conventional excipients has enabled the design of new high performance direct compression excipients
- PanExcea GR is an unique natural polymer enabling development of gastroretentive dosage forms
- Since these new excipients performance is only based on the unique physical association and not a chemical change there are no barriers for regulatory usage in current formulation development